NEC 5 V, SUPER MINIMOLD SILICON MMIC WIDEBAND AMPLIFIER

UPC2711TB UPC2712TB

FEATURES

- HIGH DENSITY SURFACE MOUNTING: 6 pin super minimold or SOT- 363 package
- SUPPLY VOLTAGE: Vcc = 4.5 to 5.5 V
- WIDEBAND RESPONSE: UPC2711TB: fu = 2.9 GHz TYP UPC2712TB: fu = 2.6 GHz TYP
- **POWER GAIN:** UPC2711TB: GP = 13 dB TYP UPC2712TB: GP = 20 dB TYP

DESCRIPTION

The UPC2711TB and UPC2712TB are Silicon MMIC Wideband Amplifiers manufactured using NEC's 20 GHz f_T NESATTM III silicon bipolar process. These devices are designed for use as buffer amps in DBS tuners. The UPC2711/12TB are pin compatible and have comparable performance as the larger UPC2711/12T, so they are suitable for use as a replacement to help reduce system size. These IC's are housed in a 6 pin super minimold or SOT-363 package.

NEC's stringent quality assurance and test procedure ensure the highest reliability and performance.

TYPICAL PERFORMANCE CURVES

Frequency, f (GHz)

PART NUMBER PACKAGE OUTLINE			ι	UPC2711TB \$06			UPC2712TB S06		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX	MIN	TYP	MAX	
lcc	Circuit Current (no signal)	mA	9	12	15	9	12	15	
GP	Power Gain, f = 1 GHz	dB	11	13	16.5	18	20	23.5	
fu	Upper Limit Operating Frequency (The gain at fu is 3 dB down from the gain at 100 MHz)	GHz	2.7	2.9		2.2	2.6		
ΔGp	Gain Flatness, f = 0.1 GHz to 2.5 GHz	dB		±0.8			±0.8		
PO(SAT)	Maximum Output Level, f = 1 GHz, PIN = 0 dBm	dBm	-2	+1		0	+3		
NF	Noise Figure, f = 1 GHz	dB		5	6.5		4.5	6	
RLIN	Input Return Loss, f = 1 GHz	dB	20	25		9	12		
RLOUT	Output Return Loss, f = 1 GHz	dB	9	12		10	13		
ISOL	Isolation, f = 1 GHz	dB	25	30		28	33		

ELECTRICAL CHARACTERISTICS (TA = +25 °C, Vcc = 5.0 V, ZL = ZS = 50 Ω)

ABSOLUTE MAXIMUM RATINGS1 (TA = 25° C)

SYMBOLS	PARAMETERS	UNITS	RATINGS
Vcc	Supply Voltage (Pin 5, Pin 8)	V	6
Pin	Input Power	dBm	TBD
Рт	Total Power Dissipation ²	mW	TBD
Тор	Operating Temperature	°C	-45 to +85
Тѕтс	Storage Temperature	°C	-55 to +150

Notes:

1. Operation in excess of any one of these parameters may result in permanent damage. 2. Mounted on double sided copper clad 50 x 50 x 1.6 mm epoxy

glass PWB (TA = $+85^{\circ}$ C).

RECOMMENDED **OPERATING CONDITIONS**

SYMBOL	PARAMETER	UNITS	MIN	TYP	MAX
Vcc	Supply Voltage	V	4.5	5.0	5.5
Тор	Operating Temperature	°C	-40	+25	+85

PIN DESCRIPTION

Pin No.	Pin Name	Applied Voltage (V)	Description	Internal Equivalent Circuit
1	Input		Signal input pin. An internal matching circuit, configured with resistors, enables 50Ω connection over a wide bandwidth. A multi-feedback circuit is designed to cancel the deviations of hFE and resistance. This pin must be coupled to the signal source with a blocking capacitor.	
4	Output		Signal output pin. An internal matching circuit, configured with resistors, enables $50 \ \Omega$ connection over a wide bandwidth. This pin must be coupled to the output load with a blocking capacitor.	
6	Vcc	4.5 to 5.5	Power supply pin. This pin should be externally equipped with a bypass capacitor to minimize ground impedance.	
2 3 5	GND	0	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be connected together with wide ground pattern to minimize impedance difference.	

OUTLINE DIMENSIONS (Units in mm)

PIN CONNECTIONS

1. Input 4. Output

		- T .	Outpu
2.	GND	5.	GND
3.	GND	6.	Vcc

TEST CIRCUIT

ORDERING INFORMATION

PART NUMBER	MARKING	QTY
UPC2711TB-E3	C1G	3K/reel
UPC2712TB-E3	C1H	3K/reel

Note: Embossed tape, 8 mm wide. Pins 1, 2, and 3 face perforated side of tape.

DATA SUBJECT TO CHANGE WITHOUT NOTICE

RINTED IN USA ON RECYCLED PAPER -2/97