NEC

3 V, SUPER MINIMOLD SILICON MMIC WIDEBAND AMPLIFIER

UPC2745TB UPC2746TB

FEATURES

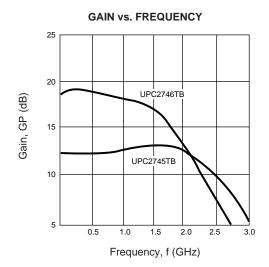
• HIGH DENSITY SURFACE MOUNTING: 6 pin super minimold or SOT-363 package

• LOW SUPPLY VOLTAGE: Vcc = 1.8 to 3.3 V

• WIDEBAND RESPONSE:

UPC2745TB: fu = 2.7 GHz TYP UPC2746TB: fu = 1.5 GHz TYP

• HIGH ISOLATION:


UPC2745TB: ISOL = 38 dB TYP UPC2746TB: ISOL = 45 dB TYP

DESCRIPTION

The UPC2745TB and UPC2746TB are Silicon MMIC Wideband Amplifiers manufactured using NEC's 20 GHz f_{T} NESAT $^{\mathsf{TM}}$ III silicon bipolar process. These devices are designed for use as buffer amps in mobile communication applications such as Cellular, PCS, and Cordless handsets, and WLAN transceivers. The UPC2745/46TB are pin compatible and have comparable performance as the larger UPC2745/46T, so they are suitable for use as a replacement to help reduce system size. These IC's are housed in a 6 pin super minimold or SOT-363 package.

NEC's stringent quality assurance and test procedure ensure the highest reliability and performance.

TYPICAL PERFORMANCE CURVES

ELECTRICAL CHARACTERISTICS (TA = +25 °C, ZL = ZS = 50 Ω)

PART NUMBER PACKAGE OUTLINE				UPC2745TB S06			UPC2746TB S06		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX	MIN	TYP	MAX	
Icc	Circuit Current (no signal), Vcc = 3.0 V Vcc = 1.8 V	mA mA	5.0	7.5 4.5	10.0	5.0	7.5 4.5	10.0	
GP	Power Gain, Vcc = 3.0 V, f = 0.5 GHz Vcc = 3.0 V, f = 1 GHz Vcc = 3.0 V, f = 2 GHz Vcc = 1.8 V, f = 500 MHz	dB dB dB dB	9.0	12 12 11 7	14	16	19 18.5 14	21	
fu	Upper Limit Operating Frequency (3 dB down from the gain at f = 100 MHz) Vcc = 3.0 V Vcc = 1.8 V	GHz GHz	2.3	2.7 1.8		1.1	1.5 1.1		
PO(SAT)	Maximum Output Level Vcc = 3.0 V, f = 0.5 GHz, PIN = -6 dBm Vcc = 3.0 V, f = 1 GHz, PIN = -6 dBm Vcc = 3.0 V, f = 2 GHz, PIN = -6 dBm Vcc = 1.8 V, f = 500 MHz, PIN = -10 dBm	dBm dBm dBm dBm	-4	-1 -2.5 -3.5 -11		-3	0 -1 -8		
NF	Noise Figure, Vcc = 3.0 V, f = 0.5 GHz Vcc = 3.0 V, f = 1 GHz Vcc = 3.0 V, f = 2 GHz Vcc = 1.8 V, f = 500 MHz	dB dB dB dB		6 5.5 5.7 8.0	7.5		4.0 4.2 5.0	5.5	

_California Eastern Laboratories

ELECTRICAL CHARACTERISTICS (TA = +25 °C, ZL = ZS = 50 Ω)

PART NUMBER PACKAGE OUTLINE			UPC2745TB S06			UPC2746TB S06		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX	MIN	TYP	MAX
RLIN	Input Return Loss, Vcc = 3.0 V, f = 0.5 GHz Vcc = 3.0 V, f = 1 GHz Vcc = 3.0 V, f = 2 GHz Vcc = 1.8 V, f = 0.5 GHz	dB dB dB dB	8	11 13 14 6.5		10	13 10	
RLOUT	Output Return Loss, $Vcc = 3.0 \text{ V}$, $f = 0.5 \text{ GHz}$ Vcc = 3.0 V, $f = 1 GHzVcc = 3.0 V$, $f = 2 GHzVcc = 1.8 V$, $f = 0.5 GHz$	dB dB dB dB	2.5	5.5 6.5 8.5 6.0		5.5	8.5 8.5 9.5	
ISOL	Isolation, Vcc = 3.0 V, f = 0.5 GHz Vcc = 3.0 V, f = 1 GHz Vcc = 3.0 V, f = 2 GHz Vcc = 1.8 V, f = 0.5 GHz	dB dB dB dB	33	38 33 30 35		40	45 38 37	
IM3	3rd Order Intermodulation Distortion Vcc = 3.0 V, Pout = -20 dBm, f1 = 500 MHz, f2 = 502 MHz Vcc = 3.0 V, Pout = -20 dBm, f1 = 1000 MHz, f2 = 1002 MHz Vcc = 1.8 V, Pout = -20 dBm, f1 = 500 MHz, f2 = 502 MHz	dBc dBc dBc		-54 -50 -31			-51 -37	

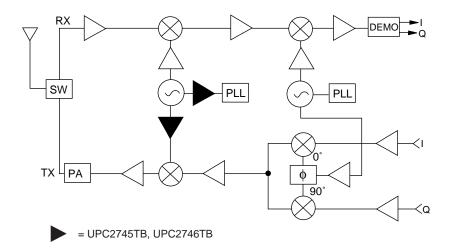
ABSOLUTE MAXIMUM RATINGS¹ (TA = 25°C)

SYMBOLS	PARAMETERS	UNITS	RATINGS
Vcc	Supply Voltage (Pin 5, Pin 8)	V	4.0
Pin	Input Power	dBm	TBD
Рт	Total Power Dissipation ²	mW	TBD
Тор	Operating Temperature	°C	-45 to +85
Тѕтс	Storage Temperature	°C	-55 to +150

Notes:

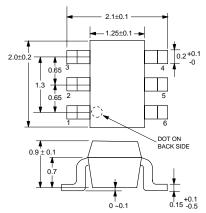
- Operation in excess of any one of these parameters may result in permanent damage.
- Mounted on double sided copper clad 50 x 50 x 1.6 mm epoxy glass PWB (TA = +85°C).

RECOMMENDED OPERATING CONDITIONS

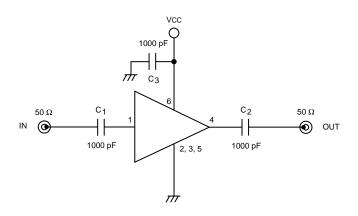

SYMBOL	PARAMETER	UNITS	MIN	TYP	MAX
Vcc	Supply Voltage	V	2.7	3.0	3.3
Тор	Operating Temperature	°C	-40	+25	+85

PIN DESCRIPTION

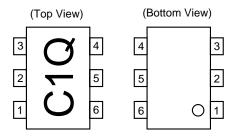
Pin No.	Pin Name	Applied Voltage (V)	Description	Internal Equivalent Circuit
1	Input		Signal input pin. An internal matching circuit, configured with resistors, enables 50Ω connection over a wide bandwidth. This pin must be coupled to the signal source with a blocking capacitor.	© ★ (4)
4	Output		Signal output pin. An internal matching circuit, configured with resistors, enables $50~\Omega$ connection over a wide bandwidth. This pin must be coupled to the output load with a blocking capacitor.	
6	Vcc	2.7 to 3.3	Power supply pin. This pin should be externally equipped with a bypass capacitor to minimize ground impedance.	
2 3 5	GND	0	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All the ground pins must be connected together with wide ground pattern to minimize impedance difference.	


SYSTEM APPLICATION EXAMPLE

PCS



OUTLINE DIMENSIONS (Units in mm)


PACKAGE OUTLINE S06

TEST CIRCUIT

PIN CONNECTIONS

Marking is an example of UPC2745TB

- 1. Input 4. Output
- 2. GND 5. GND
- 3. GND 6. Vcc

ORDERING INFORMATION

PART NUMBER	MARKING	QTY
UPC2745TB-E3	C1Q	3 K/reel
UPC2746TB-E3	C1R	3 K/reel

Note: Embossed tape, 8 mm wide. Pins 1, 2, and 3 face perforated side of tape.